The TDA8214B is a horizontal and vertical deflection circuit with super sandcastle generator and video identification output. Used with TDA8213 (Video & Sound IF system) and TDA8217 (PAL decoder and video processor), this IC permits a complete low-cost solution for PAL applications.

DESCRIPTION

- Direct frame-yoke drive (±1A)
- Composite video signal input capability
- Frame output protection against short circuits
- PLL
- Video identification circuit
- Super sandcastle output
- Very few external components
- Very low cost power package

PIN CONNECTIONS

- **VCC1**: 1 (Video input)
- **FRAME OSCILLATOR**: 2
- **VCC2**: 3
- **FRAME FLYBACK GENERATOR**: 4
- **GROUND**: 5, 6
- **POWER AMPLIFIER INPUT**: 7
- **VIDEO IDENTIFICATION OUTPUT**: 8
- **FRAME POWER SUPPLY**: 9
- **FRAME OUTPUT**: 10
- **SUPER SANDCASTLE OUTPUT**: 19
- **LINE FLYBACK INPUT**: 18
- **LINE OUTPUT**: 17
- **GROUND**: 16
- **RC NETWORK**: 14
- **LINE SAWTOOTH INPUT**: 13
- **PHASE DETECTOR**: 12
- **LINE OSCILLATOR**: 11

ORDER CODE: TDA8214B

POWERDIP 16 + 2 + 2
(Plastic Package)
BLOCK DIAGRAM

![Block Diagram Image]

ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC1}</td>
<td>Supply Voltage</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>V_{CC2}</td>
<td>Flyback Generator Supply Voltage</td>
<td>35</td>
<td>V</td>
</tr>
<tr>
<td>V_9</td>
<td>Frame Power Supply Voltage</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>$I_{10_{NR}}$</td>
<td>Frame Output Current (non repetitive)</td>
<td>± 1.5</td>
<td>A</td>
</tr>
<tr>
<td>I_{10}</td>
<td>Frame Output Current (continuous)</td>
<td>± 1</td>
<td>A</td>
</tr>
<tr>
<td>V_{17}</td>
<td>Line Output Voltage (external)</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>$I_{p_{17}}$</td>
<td>Line Output Peak Current</td>
<td>0.8</td>
<td>A</td>
</tr>
<tr>
<td>$I_{c_{17}}$</td>
<td>Line Output Continuous Current</td>
<td>0.4</td>
<td>A</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Storage Temperature</td>
<td>-40 to + 150</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Max Operating Junction Temperature</td>
<td>+ 150</td>
<td>°C</td>
</tr>
<tr>
<td>T_{AMB}</td>
<td>Operating Ambient Temperature</td>
<td>0 to 70</td>
<td>°C</td>
</tr>
</tbody>
</table>

THERMAL DATA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{TH_{(j-c)}}$</td>
<td>Max Junction-case Thermal Resistance</td>
<td>10</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{TH_{(j-a)}}$</td>
<td>Typical Junction-ambient Thermal Resistance (Soldered on a 35μm thick 45cm² PC Board copper area)</td>
<td>40</td>
<td>°C/W</td>
</tr>
<tr>
<td>T_J</td>
<td>Max Recommended Junction Temperature</td>
<td>120</td>
<td>°C</td>
</tr>
</tbody>
</table>

SGS-THOMSON MICROELECTRONICS

2/9
ELECTRICAL CHARACTERISTICS

\(V_{CC1} = 10V, \ T_{AMB} = 25^\circ C \) (unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCC1</td>
<td>Supply Current</td>
<td>15</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>VCC1</td>
<td>Supply Voltage</td>
<td>9</td>
<td>10</td>
<td>10.5</td>
<td>V</td>
</tr>
</tbody>
</table>

VIDEO INPUT (Pin 20)

- **V20**: Reference Voltage \((I_{20} = -1 \mu A) \)
 - Min. 1.4
 - Typ. 1.75
 - Max. 2
 - Unit V

- **MWF**: Minimum Width of Frame Pulse (When synchronized with TTL signal)
 - Min. 50
 - Typ. \(\mu s \)

LINE OSCILLATOR (Pin 11)

- **LT11**: Low Threshold Voltage
 - Min. 2.8
 - Typ. 3.2
 - Max. 3.6
 - Unit V

- **HT11**: High Threshold Voltage
 - Min. 5.4
 - Typ. 6.6
 - Max. 7.8
 - Unit V

- **BL11**: Bias Current
 - Min. 100
 - Typ. nA

- **DR11**: Discharge Impedance
 - Min. 1.0
 - Typ. 1.4
 - Max. 1.8
 - Unit kΩ

- **FLP1**: Free Running Line Period
 - Min. 62
 - Typ. 64
 - Max. 66
 - Unit μs

- **FLP2**: Free Running Line Period
 - Min. 27
 - Typ. μs

- **OT11**: Oscillator Threshold for Line Output, Pulse Triggering
 - Min. 4.6
 - Typ. V

- **ΔF/ΔΘ**: Horizontal Frequency Drift with Temperature (see application)
 - Min. 2
 - Typ. Hz/°C

LINE OUTPUT (Pin 17)

- **LV17**: Saturation Voltage \((I_{17} = 200mA) \)
 - Min. 1.1
 - Typ. 1.6
 - Max. V

- **OPW**: Output Pulse width (line period = 64μs)
 - Min. 27
 - Typ. 29
 - Max. 31
 - Unit μs

LINE SAWTOOTH INPUT (Pin 13)

- **V13**: Bias Voltage
 - Min. 1.8
 - Typ. 2.4
 - Max. 3.2
 - Unit V

- **Z13**: Input Impedance
 - Min. 4.5
 - Typ. 5.8
 - Max. 8
 - Unit kΩ

PHASE DETECTOR (Pin 12)

- **I12**: Output Current During Synchro Pulse
 - Min. 250
 - Typ. 350
 - Max. 500
 - Unit μA

- **R112**: Current Ratio (positive/negative)
 - Min. 0.95
 - Typ. 1
 - Max. 1.05

- **LI12**: Leakage Current
 - Min. -2
 - Typ. +2
 - Max. μA

- **CV12**: Control Range Voltage
 - Min. 2.60
 - Typ. 7.10
 - Max. V

VIDEO IDENTIFICATION (Pin 8)

- **V_{HB}**: Without video signal \((I_{S} = -500\mu A) \)
 - Min. 4.5
 - Typ. 6.3
 - Max. V

- **V_{Lb}**: With video signal \((I_{S} = 50\mu A) \)
 - Min. 0.6
 - Typ. 0.9
 - Max. V

FRAME OSCILLATOR (Pin 2)

- **LT2**: Low Threshold Voltage
 - Min. 1.6
 - Typ. 2.0
 - Max. 2.3
 - Unit V

- **HT2**: High Threshold Voltage
 - Min. 2.6
 - Typ. 3.1
 - Max. 3.6
 - Unit V

- **DL2**: LT2 - HT2
 - Min. 1.0
 - Typ. V

- **BI2**: Bias Current
 - Min. 30
 - Typ. nA

- **DR2**: Discharge Impedance
 - Min. 300
 - Typ. 470
 - Max. 700 Ω

- **FFP1**: Free Running Frame Period
 - Min. 20.5
 - Typ. 23
 - Max. 25 ms

- **MFP**: Minimum Frame Period \((I_{20} = -100\mu A) \) with the Same RC
 - Min. 12.8
 - Typ. ms

- **FFP2**: Free Running Frame Period \((R = 408KΩ, \ C = 220nF) \)
 - Min. 14.3
 - Typ. ms

- **FPR**: Frame Period Ratio = FFP/MFP
 - Min. 1.7
 - Typ. 1.8
 - Max. 1.9

- **FG**: Frame Saw-tooth Gain Between Pin 1 and non Inverting Input of the Frame Amplifier
 - Min. -0.4

- **ΔF/ΔΘ**: Vertical Frequency Drift with Temperature (see application)
 - Min. 4.10 \(^{3} \)
 - Typ. Hz/°C
ELECTRICAL CHARACTERISTICS (continued)

$V_{CC1} = 10V$, $T_{AMB} = 25^\circ C$ (unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V9</td>
<td>Operating Voltage (with flyback Generator)</td>
<td>10</td>
<td>58</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I9</td>
<td>Supply Current ($V9 = 30V$)</td>
<td>11</td>
<td>22</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>V CC2</td>
<td>Operating Voltage</td>
<td>10</td>
<td>30</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

FRAME OUTPUT (Pin 10)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Saturation Voltage to Ground ($V9 = 30V$)</th>
<th>0.06</th>
<th>0.6</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>LV10A</td>
<td>I10 = 0.1A</td>
<td>0.37</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>HV10A</td>
<td>I10 = -0.1A</td>
<td>1.3</td>
<td>1.6</td>
<td>V</td>
</tr>
<tr>
<td>HV10B</td>
<td>I10 = -1A</td>
<td>1.7</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>FV10A</td>
<td>I10 = 0.1A</td>
<td>1.6</td>
<td>2.1</td>
<td>V</td>
</tr>
<tr>
<td>FV10B</td>
<td>I10 = 1A</td>
<td>2.5</td>
<td>4.5</td>
<td>V</td>
</tr>
</tbody>
</table>

FLYBACK GENERATOR (Pin 3 and Pin 4)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Flyback Transistor on (output = high state), $V_{CC2} = 30V$</th>
<th>1.5</th>
<th>2.1</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2DA</td>
<td>$I_4 \rightarrow 3 = 0.1A$</td>
<td>3.0</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td>F2DB</td>
<td>$I_4 \rightarrow 3 = 1A$</td>
<td>0.8</td>
<td>1.1</td>
<td>V</td>
</tr>
<tr>
<td>FSVA</td>
<td>$I_3 \rightarrow 4 = 0.1A$</td>
<td>2.2</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td>FSVB</td>
<td>$I_3 \rightarrow 4 = 1A$</td>
<td>1.3</td>
<td>1.6</td>
<td>V</td>
</tr>
</tbody>
</table>

SUPER SANDCASTLE OUTPUT (Pin 19)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Output Voltages ($R_{load} = 2.2k\Omega$)</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANDT2</td>
<td>Frame blanking pulse level</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
<td>V</td>
</tr>
<tr>
<td>SANDL2</td>
<td>Line blanking pulse level</td>
<td>8</td>
<td>9</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>BG2</td>
<td>Burst key pulse level</td>
<td>3.7</td>
<td>4</td>
<td>5</td>
<td>µs</td>
</tr>
<tr>
<td>SC3</td>
<td>Delay between middle of sync pulse and leading edge of burst key pulse</td>
<td>2.3</td>
<td>2.7</td>
<td>3.1</td>
<td>µs</td>
</tr>
<tr>
<td>SC2</td>
<td>Duration of burst key pulse, Vertical blanking pulse width</td>
<td>4</td>
<td>5</td>
<td>µs</td>
<td></td>
</tr>
</tbody>
</table>

LINE FLYBACK INPUT (Pin 18)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Switching level</th>
<th>2</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum input current at $V_{PEAK} = 800V$</td>
<td>8</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Limiting voltage at maximum current</td>
<td>4.3</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>τ RC network time constant (Note 2)</td>
<td>6</td>
<td>µs</td>
</tr>
</tbody>
</table>

Notes:

1. Width of vertical blanking pulse on SSC output is proportional to the frame flyback time, the switching level is $V_{CC2} - 2V_{BE}$ and the other input of the comparator is tied to the frame amplifier output. Application circuit uses the frame flyback generator.

2. An RC network is connected to this input. Typical value for the resistor is $27k\Omega$ and $220pF$ for the capacitor. A different time constant for RC changes the delay between the middle of the line synchro pulse and the leading edge of the burst key pulse but also the duration of the burst key pulse.
GENERAL DESCRIPTION

The TDA8214B performs all the video and power functions required to provide signals for the line driver and frame yoke.

It contains:
- A synchronization separator
- An integrated frame separator without external components
- A saw-tooth generator for the frame
- A power amplifier for direct drive of frame yoke (short circuit protected)
- An open collector output for the line driver

Figure 1: Synchronization Separator Circuit

Figure 2: Frame Separator
Figure 3: Line Oscillator

The oscillator thresholds are internally fixed by resistors. The discharge of the capacitor depends on the internal resistor R4. The control voltage is applied on resistor R5.

Figure 4: Phase Comparator

The sync-pulse drives the current in the comparator. The line flyback integrated by the external network gives on pin 13 a saw tooth, the DC offset of this saw tooth is fixed by VC. The comparator output provides a positive current for the part of the signal on pin 13 greater than to VC and a negative current for the other part. When the line flyback and the video signal are synchronized, the output of the comparator is an alternatively negative and positive current. The frame sync-pulse inhibits the comparator to prevent frequency drift of the line oscillator on the frame beginning.

Figure 5

Line output (Pin 17)

It is an open-collector output. The output positive pulse time is 29µs for a 64µs period. The oscillator thresholds are internally fixed by resistors. The oscillator is synchronized during the last half free run period. The input current during the charge of the capacitor is less than 100nA.
Frame output amplifier
This amplifier is able to drive directly the frame yoke. Its output is short circuit and overload protected; it contains also a thermal protection.

The frame blanking is detected by the frame flyback generator. When the output voltage of the frame amplifier exceeds $V_{CC2} - 2V_{BE}$, the pulse is detected. The line flyback detection is provided by a comparator which compares the input line flyback pulse to an internal reference. The burst gate pulse position is fixed by the external RC network (Pin 14). It is referenced to the middle of the line flyback.

This stage will detect the coincidence between the line sync pulse (if present) and a 2µs sampling pulse. This 2µs pulse is positionned at the center of line sync pulse when the phase loop is locked. This sampled detection is stored by an external capacitor Pin 8.

The identification output level is high when video signal is present.

Important remark: minimum saw-tooth amplitude on Pin 13 has to be 2VPP (typ.: 2.5VPP).
Figure 8 : Video Identification Circuit (Pin 8)

Video Identification
- Video Input: 1.5kΩ, 220pF
- Line Flyback: 15kΩ, 22nF, 68pF
- Horizontal Frequency: 22kΩ, 1µF
- Vertical Amplitude: 220kΩ
- Vcc: +24V
- Vcc1

TYPICAL APPLICATION

Integrated Flyback
- Line Sync.
- with video
- without video

Sampling Pulse
- V_R1

Line Retrace
- V_R

Line Flyback
- V_H

TDA 8214B
PACKAGE MECHANICAL DATA

20 PINS - PLASTIC POWERDIP

![Diagram of the package](image)

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Millimeters</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.85</td>
<td>1.4</td>
</tr>
<tr>
<td>b</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>b1</td>
<td>0.38</td>
<td>0.5</td>
</tr>
<tr>
<td>D</td>
<td>24.8</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>2.54</td>
<td></td>
</tr>
<tr>
<td>e3</td>
<td>22.86</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3.3</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>3.3</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of \^C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips \^C Patent. Rights to use these components in a \^C system, is granted provided that the system conforms to the \^C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.